fbpx
Are people scared of eating butter or Ghee

Are people scared of eating butter or Ghee

Are people scared of eating butter or Ghee?

Nikita Wadhwani, Indian, mother of two children:

“I’m not afraid of butter, but I think it’s a little fattening, so I use ghee instead. I use ghee in almost everything I cook. Ghee, a form of clarified butter, gives more strength, as it’s good for energy intake for the kids, especially as they are growing up, it’s good for the bones too. I only give them a little bit of butter once or twice a week to spread on their bread for breakfast. Consuming too much of ghee can be fattening, but the advantages are more as compared to oil. In olden days, people mostly used ghee, not oil. My only concern with butter is that it can raise cholesterol, and provide less energy.”

Sia Kalathakis, Greek, Consultant:

“Where I come from, we mostly use olive oil to cook our food, but for the food that requires butter, we mostly opt for substitutes because they help in reducing cholesterol. Ancient Greeks believed butter should be used in limited quantities because excess can be bad for health. Personally, I never use pure butter in my diet, I’m not against it because I know we need some butter [in our diet]. In Europe, they mostly substitute butter with margarine. It is low in fat and reduces cholesterol. It’s also medically proven that within two months of usage, it reduces cholesterol. The smell of pure butter can never be compared to other substitutes, it even tastes better when used to cook pastries.”

Nicholas Brook, Kenyan, Brand

“I consume salted butter mostly, because unsalted version doesn’t have the true flavour of butter. I’m not afraid of butter, I actually love it because it comes from cow’s milk, and since I love drinking milk, I have a strong connection with butter. I use pure butter for almost everything I cook, mainly mashed potatoes, fried eggs, and on bread. I would say I use a tablespoon of butter a day. As for substitutes, I use margarine once in awhile. I’m aware that margarine is not healthier than butter, because it’s artificially made and contains chemicals. All in all, the taste of butter is unbeatable.” Manager

Essem David, 24, Kazakhstan, Photographer

“As far as I know, if the butter is pure, then it can be very healthy for the bones and the body and although margarine is lower in calories, it is bad for health. I personally avoid margarine and use butter, but in limited quantities. For example, I would have it once a day in the morning and only use it to butter bread. Otherwise, I use olive oil to cook my food, because I don’t fry the food. Butter has a special taste that cannot be found in other substitutes.”

Source : gulfnews.com

Meet The Startup Churning A Profit From Ghee, A Better For You Butter

Meet The Startup Churning A Profit From Ghee, A Better For You Butter

Meet The Startup Churning A Profit From Ghee, A Better For You Butter

From grains like farro and quinoa to fermented fare like sauerkraut and kimchi, it’s no secret that “ancient” foods are making a resurgence on modern menus. But that leaves diners wondering, what’s the next age-old ingredient that will be made new again? One founder has her money on ghee. Raquel Tavares Gunsagar launched her company, Fourth & Heart, two and a half years ago to sell her ancient butter alternative to contemporary consumers. For Tavares, timing proved critical. She introduced her product to the market just as America’s obsession with healthy fats, like avocado and coconut oil, was heating up.

After presenting at Expo West in 2015, she captured investor attention and secured a deal with leading organic and natural foods distributor UNFI. Just over a year out from launch and one rebrand later, Fourth & Heart closed a $1 million Series A on crowdfunding site CircleUp, lead by an anonymous private investor. The company, started with $80,000 of her personal savings, did $2.2 million in revenue in 2016, Tavares tells FORBES. “I had an idea and I didn’t know how fast it was going to take off,” says Tavares, who admits that she was surprised by how quickly her product was picked up by retailers. “We were in a small category and the idea was just starting to trend.” Since then, it’s become more mainstream.

Her ghee is now sold in 6,000 points of distribution including chains like Kroger, Whole Foods, Giant Eagle and Central Market. She’s hoping to launch in Target stores in 2017. “I see it picking up the most right now,” she says of the self-staple pantry item.

Why bring ghee back? Ghee, a type of clarified butter, dates back thousands of years to ancient India. It appears in the Indian holy text the Bhagavad Gita and was (and is) still used for religious rituals, as an alternative medicine, and, most commonly, as a staple item in diets and core to cooking many dishes.

Tavares became familiar with ghee at an early age because her mother worked as a registered dietitian and a practitioner of Ayurveda medicine, an ancient and holistic Indian healing system which uses ghee for treatments. When Tavares left her job in marketing, later teaming up with cofounder Lillian Wunsch, she considered what food item she could start a business around and put her unique stamp on. She looked at what had been done with yogurt and peanut butter, and after reflecting on her own experience, ghee became a natural fit. She launched using first her own savings and later a $135,000 friends and family round under the name Tava.

She knew her business was going after the formidable butter market, which produces over 100 million pounds of the spread each month, with big players like Land O’Lakes leading in market share. But, Ghee falls in a category just outside of it, as a butter replacement, like coconut oil. Nevertheless, the subcategory is expanding. According to industry experts, Ghee is the fastest growing category in the nearly $10 billion butter and butter replacement industry.

Why choose ghee over butter? Ghee differs from regular butter in a few key ways. It has a high smoke point, meaning unlike butter or coconut oil, it doesn’t easily burn when heated. It’s naturally spreadable, so it doesn’t need to be softened first and it also doesn’t need to be refrigerated. Ghee is lactose-free because it doesn’t contain any milk solids, which are filtered out during the cooking process. While it doesn’t lower cholesterol, it doesn’t add to it, and is high in fat soluble vitamins A, D and E.

While other, larger, companies like Organic Valley sell ghee, Tavares says no one else offers flavored options. Her variations on the original include Himalayan Pink Salt and White Truffle Salt, among others. Tavares says her product has been showcased by companies, like Whole Foods, that note ghee as a growing trend. This good press has been critical in reaching millennials, and, she says, has helped her take “about 11-14% of existing competition” in the category.

Fourth & Heart ghee is currently sold in glass jars, but, in March, Tavares will unveil a new line of sprays, pourable ghee and single-serving portions.

Looking ahead Although, generally speaking, food trends are fickle at best, Tavares has high hopes for her brand in 2017. “This year is exciting because it’s the year our brand will become a household name,” she says. She’s intent on educating consumers about the many virtues of ghee by going into grocery stores and conveying the brand message and story directly to buyers. In terms of financials for 2017, she looking to raise more money and, “in a perfect world, we’d double our revenue.” Natalie Sportelli , FORBES STAFF

Literature review about fat oxidation

Literature review about fat oxidation

FAT OXIDATION IN GHEE

Lipid oxidation is a major cause of quality deterioration in food. The design of foods with improved quality depends on a better understanding of the physicochemical mechanisms of lipid oxidation in these systems. The oxidation of fat differs from that of bulk lipids, because of the presence of droplet membrane, the interactions between ingredients, and the partitioning of ingredients between the oil, aqueous and interfacial regions. Free radicals are the product of oxidation in which particularly unstable one react with oxygen, moisture or heat during processing or storage. In case of butter it is not solely milk fat and is, in fact, only 40 to 60 % saturated. It also consists of water and easily singed milk solids, making it a lesser option for cooking on heat. On the other hand, Ghee is almost 100 % pure, with saturated milk fat. So it is so stable and resistant to oxidation and it have a keeping quality of about 8 months without refrigeration.

FAT OXIDATION

Food lipids are principally triglycerides, phospholipids and sterols found naturally in most of biological materials consumed as food and added as functional ingredients in many processed foods. As nutrients lipids, especially triglycerides, are a concentrated caloric source, provide essential fatty acids and are a solvent and absorption vehicle for fat soluble vitamins and other nutrients. The presence of fat significantly enhances the organoleptic perception of food. As a class, lipids are also one of the most chemically unstable food components and will readily undergo free radical chain reactions that not only deteriorate the lipids but also produce

  • Produce oxidative fragments, some of which are volatile and are perceived as off -flavours of rancidity
  • Degrades proteins, vitamins and pigments
  • Cross link lipids and other macromolecules into non- nutritive polymers

The fat oxidation depends on all processing steps including raw product selection, storage, refining, manufacturing etc. Thus fat oxidation can be defined as changes in fat with oxygen in the air. Via a free radical process, the double bonds of an unsaturated fatty acid can undergo cleavage, releasing volatile aldehydes and ketones. Certain key variables now known to influence oxidative processes can be targeted to increase food lipid stability during and after processing. retention of or addition of exogenous antioxidants is a well-known consideration, but the presence and activity of catalysts, the integrity of tissues and cells, the quantity of polyunsaturated lipids and structural properties of the final food product, including total surface area of lipids, and the nature of surfactant material all pay important roles in final product stability.

Fatty acids are long aliphatic chains consisting of carbon and hydrogens. The carbon chain vary in length, degree of unsaturation, and structure. In foods, fatty acids are mainly found in lipid complexes called triglycerides. Some fatty acids are saturated, while other have different degrees of unsaturation. However, when talking about lipid oxidation it is only the polyunsaturated fatty acids which are of interest. Polyunsaturated fatty acids contain two or more double bonds, and it is these double bonds which are prone to oxidation. Consequently, the risk of oxidation increases with the number of double bonds present in the fatty acid. For instance, EPA (C20:5) having five double bonds, is more prone to oxidation than linolenic acid (C18:3), having only three double bonds.

MAIN DEFECTS IN GHEE DUE TO OXIDATION

Rancidity: This is the most serious defect of ghee. It is of two types, viz. hydrolytic and oxidative rancidity. Normally this defect develops in ghee during storage, but in case the raw material used for ghee making is rancid, the freshly prepared ghee will also have this defect. Rancidity in ghee is caused by the formulation of volatile compounds, which exhibit unpleasant odours even when present in small quantities. The nutritive value of ghee is also adversely affected due to rancidity in ghee. Milk fat hydrolysis is faster in liquid state than in solid state. Because of more solid fat in buffalo milk its rate of fat hydrolysis is slower than cow milk fat. Therefore, the cow ghee is more prone to developing rancid flavour during storage.

Hydrolytic rancidity: The fat splitting enzyme, lipoprotein lipase found in milk fat globule membrane, is responsible for hydrolysis of milk fat and production of lower molecular weight fatty acids (butyric, caproic and caprylic). These fatty acids, particularly butyric, impart rancid off flavour in ghee. During manufacture of ghee a very high heat treatment is employed which inactivates the lipase enzyme. Therefore, the hydrolytic rancidity, in ghee is not of much problem, provided raw material of good quality (having no rancidity) is used. Rancid flavour defect is found more commonly in butter oil.

Oxidative rancidity: Oxidation of butterfat (ghee) is a more common problem and caused by oxidation of poly-unsaturated fatty acids in presence of oxygen. The reaction of oxygen with poly-unsaturated fatty acids involves free radical initiation, propagation and termination. In ghee and butter oil the chain reaction is catalysed by heat, light, ionization reaction and trace metals (copper and iron), etc. The end products of lipid auto-oxidation are ketones, aldehydes, alcohols, hydrocarbons, acids, epoxides etc. Oxidation process begin virtually as soon as the membranes around the MF globules in milk are ruptured, allowing air to come in contact with the fat. During manufacture and most importantly, during the packing and storage of MF products, it is essential that the fat is protected as far as possible ravages of oxidation.

Defects associated with oxidation: The contamination of cream by copper or iron through poor manufacturing practices and use of equipment containing these metals result in rapid oxidation of lipids producing off-flavours, typically cardboardly, metallic, tallow, oily and fishy. This defects is now comparatively rare because of the widespread use of stainless steel and elimination of copper from dairy equipment. Protection from light and air is very important to prevent oxidation. The oxidation lead to formation of free radicals, peroxides and oxidised cholesterols.

Light induced flavours can develop when cream is exposed to sunlight, fluorescent light or even diffused daylight. The most damaging wavelength are in UV range between 440 to 490nm, while 310 to 440nm and 490 to 500nm also contribute to accelerated degradation. Homogenisation and too vigorous agitation my increase oxidation and off flavour production.

 PREVENTION TECHNIQUES

Use of good quality raw material: Raw material used for the manufacture of ghee and butter oil should be of good quality. Any off flavour, such as acidic, oxidized, and rancid present in raw material shall be carried over to the final product. The raw material should also be checked for the presence of copper and iron, which should not be more than permissible limits. Method of manufacture of ghee: Ghee prepared by desi method has higher moisture and higher acidity and thus lower keeping quality. If ghee is to be stored for longer time than this method should be avoided. The sulfhydryl and phospholipid contents have antioxidant properties in ghee and butter oil. Those methods, which releases higher amounts of these natural antioxidant components should be adopted. Heating butterfat with higher amounts of solids-not-fat, as in case of direct cream method, at higher temperature of clarification will produce more sulfhydryl and thus better shelf life. Probably due to this reason the keeping quality of ghee is more than butter oil. The pre-stratification method produces ghee with higher amounts of phospholipids because its loss in ghee residue is minimum. Also the extraction of phospholipids from ghee residue and addition @ 1 percent to the ghee enhance its keeping quality.

Effect of species of mammals: Cow ghee is apparently more shelf-stable than buffalo ghee due to the higher content of natural antioxidants the former product. Although buffalo ghee has been reported to be more resistant to lipolysis than cow ghee. Ghee prepared from cottonseed-fed animals showed that the fat had better keeping quality, presumably because of the antioxidant properties of gossypol, a phenolic substance in cotton seed observed that ghee produced and packed in winter has longer shelf life than that packed in summer and rainy seasons.

Effect of method of preparation: The keeping quality of ghee is affected by the method of manufacture. It is 9 months for DC method and 4 months for creamery butter method. Higher temperatures, or longer periods of heating at a particular temperature, have been shown to impart better oxidative stability because of greater liberation of phospholipids from phospholipid-protein complexes. It has been suggested that during heating, especially after most of the moisture has been evaporated, antioxidants are produced from phospholipids. The antioxidative properties of phospholipids in ghee have well established, and it has been shown that the presence of 0.1mg 100g phospholipids improves the keeping quality of ghee. Phospholipids may exhibit antioxidant activity by binding metals, regenerating other antioxidants and providing a synergism with phenolic antioxidant. The main fraction of phospholipids, which exerted antioxidant property, was found to be cephalin. This fraction also showed maximum browning, which presumably was correlated with antioxidant properties. It was demonstrated that phospholipids acts synergistically with tocopherol, and it has also a metal-inactivating action with copper.

Addition of antioxidants: The antioxidants are added universally to anhydrous butterfat and high fat food products. There are two sources of antioxidants, namely synthetic and natural.

Synthetic antioxidants: These include

– Gallates (ethyl, propyl and octyl),

– Butylated hydroxy anisol (BHA)

– Butylated hydroxy toluene (BHT)

– Tertiary butyl hydro quinone (TBHQ), and many more.

PFA rules do not allow any synthetic antioxidant in ghee whereas permits the addition of gallates up to a level 0.01% and BHA & BHT up to 0.02% in butter oil.

Naturally occurring antioxidants: There are many plants and herbs, which have antioxidant properties and may be added particularly to ghee for extending the keeping quality. Some of the examples of such natural sources are as below: